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Abstract 

Bi-Level Integrated System Synthesis (BLISS) is an 
approach that allows design problems to be naturally 
decomposed into a set of subsystem optimizations and 
a single system optimization. In the BLISS approach, 
approximate mathematical models are used to transfer 
information from the subsystem optimizations to the 
system optimization. Accurate approximation models 
are therefore critical to the success of the BLISS 
procedure. In this paper, new capabilities that are being 
developed to generate accurate approximation models 
for BLISS procedure will be described. The benefits of 
using flexible approximation models such as Kriging 
will be demonstrated in terms of convergence 
characteristics and computational cost. An approach of 
dealing with cases where subsystem optimization 
cannot find a feasible design will be investigated by 
using the new flexible approximation models for the 
violated local constraints.     

 
Introduction 

 

Approximation models have become an essential 
element in many multidisciplinary design optimization 
(MDO) techniques. For example, polynomial models 
known as response surface (RS) models have been 
widely used1,2. Approximation models replace 
expensive simulation codes in the optimization process 
to reduce total computational cost. By performing the 
simulation a priori, the simulation model may be 
separated from the optimizer or other coupled 
simulation codes so that the tool integration efforts can 
be reduced. 

Bi-Level Integrated System Synthesis (BLISS)3 is 
an approach that allows design problems to be 
naturally decomposed into a set of subsystem 
optimizations and a single system optimization. The 
BLISS approach overcomes the difficulties of 

optimizing complex systems such as aircraft or 
automobiles where multidisciplinary interactions are 
prominent. BLISS performs a set of subsystem 
optimizations to create approximation models of the 
optimal subsystem, which are then used in the system 
optimization. The approximation model approach of 
BLISS effectively separates coupled subsystems and 
plays an important role in transferring information 
from subsystem level to system level. Therefore the 
success of the BLISS process depends on generating 
accurate approximation models. 

A parallel and collaborative environment is being 
developed for BLISS MDO4. Its goal is three-fold: 
First, development of parallel trade study support to 
perform hundreds of subsystem optimizations; second, 
development of collaborative design support to 
maximize utilization of project data and to provide 
easy access to the data from anywhere; third, 
development of advanced MDO support to allow 
building advanced MDO scenarios quickly. This work 
describes efforts towards the third goal. An example 
design case for a supersonic business jet (SBJ) is used 
to demonstrate that ModelCenter5 MDO framework 
can successfully solve BLISS problems. In this paper, 
the use of new approximate modeling capabilities will 
be demonstrated and the results will be compared to 
those of polynomial based models. 

 
Bi-Level Integrated System Synthesis  
 

The design optimization of complex systems is a 
challenge because, on the one hand, contributing 
engineering groups need autonomy to perform 
specialized analysis while, on the other hand, their 
domains are coupled by data exchange. The BLISS 
MDO procedure addresses this problem via 
decomposition. Disciplinary groups create response 
surface models of their domain with disciplinary 
constraints, and system group performs system 
optimization with compatibility variables. To explain 
the BLISS MDO process, we begin with the MDF                                                  
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(Multidisciplinary Feasible) formulation as the 
baseline. 

MDF Formulation 

Find: X = {Xloc, Xsh}  1.a 
Minimize: f(X)   1.b 
Satisfy: gk(X) ≤ 0  1.c 
  XL ≤ X ≤ XU  1.d 
 
The MDF formulation has only a single level 

optimization. Each disciplinary module that can be 
isolated as a unit with its input and output variables can 
be considered as a black box (BB). The design 
variables of MDF formulation include both local 
design variables (Xloc) and shared design variables (Xsh) 
common to more than one BB modules considered. For 
coupled multidisciplinary design problem, MDF 
formulation often requires iterative runs of BB modules 
to get converged values of the objective, f(X), and 
constraints, gk(X). But this iterative multidisciplinary 
analysis (MDA) process can be expensive and 
sometimes it may be impossible to solve due to 
convergence problems involving various tools of 
varying accuracy. 

In BLISS MDO, two levels of optimization are 
performed in sequence. First, sub-systems are 
optimized with respect to local design variables 
specific to each disciplinary BB module. This step is 
called BB optimization (BBOPT). Second, system 
optimization (SOPT) is performed with respect to 
system variables shared by multiple BB modules and 
coupled response variables.  

Black Box Optimization (BBOPT) and Surrogate 
Model Generation 

Given: Q = {Xsh, Y*, w}  2.a 
Find: U = {Xloc}  2.b 
Minimize: fk(U) = Σ wiY^

i  2.c 
Satisfy: gk(U) ≤ 0  2.d 
  UL ≤ U ≤ UU  2.e 
Using the BBOPT runs create surrogate models: 
Ya

^ (for coupled response Y^) 

 

System Optimization (SOPT) 

Find: Q = {Xsh, Y*, w}  3.a 
Minimize: fk(Q) = fk(Ya

^)  3.b 
Satisfy: Ya

*- Ya
^= 0  3.c 

  QL ≤ Q ≤ QU  3.d 
 

The influence of a BB on the system objective is 
captured by formulating the sub-system objective as a 
weighted sum of the coupled output responses (Y^) of 
the BB. Shared design variables, coupled input 

variables coming from another BB (Y*), and the 
weighting factors are fixed for each BB optimization 
run. The disciplinary constraints are satisfied at BB 
optimization (2.d). In BLISS, the BB optimizations are 
repeated as required by the design of experiments 
(DOE) technique to generate a large number of BB 
designs in the design space Q of the system 
optimization. Approximate surrogate models (Ya

^) are 
constructed using the BB optimization data for each of 
the coupled response variables, which will be used in 
the system optimization. 

The system optimization manipulates the system 
variables, the coupling variables, and weighting 
coefficients to improve the system objective and to 
restore couplings, i.e., the output-input equalities in the 
data exchanges among the BBs. Because surrogate 
models are used, the BB modules can be completely 
separated from the system optimizer. A step-by-step 
procedure of BLISS is described below (Ref. 6). 

 
1. Initialize system variables, weighting 

coefficients, and coupled output variables, along 
with initial anticipation of their lower and upper 
bounds.  

2. Use design of experiment (DOE) patterns to 
create a dispersion of inputs to a BB to provide a 
wide and unbiased coverage of the design space 
defined by the system design variables, the 
weighting coefficients, and the coupling 
variables 

3. Perform sub-system optimization at each design 
point from the DOE. Apply local disciplinary 
constraints, and use the weighted sum of the BB 
output variables as the objective.  

4. Create a surrogate approximation model for each 
output item. Polynomial-based response surface 
(RS) is one of commonly used approximation 
models. 

5. Repeat steps 2-4 for all the BBs. 

6. Perform system optimization in the design space 
defined by Q, using the RS models from the BB 
optimization. Apply equality constraints to 
restore couplings among the BBs, and use a 
system performance measure as the objective. 

7. Check if the design history has converged. If 
convergence has been achieved, terminate the 
process. Otherwise, update variable bounds to 
adjust the search area for the system 
optimization and continue steps 2 to 6 until 
convergence (i.e., BLISS cycles). 
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Choice of Surrogate Model for BLISS 

 

Note that approximation models play a key role in 
the BLISS process because they transfer subsystem 
optimization results to the system optimization. The 
accuracy of the approximations will directly affect the 
quality of the optimum found from the BLISS 
procedure. Because of approximate nature of the 
surrogate models, it is required to repeat the sequence 
of surrogate model generation of BBOPT and SOPT. 
One sequence of BBOPT surrogate model generation 
and SOPT is called a BLISS cycle. As BLISS cycles 
progress, the search region defined by lower and upper 
bounds in Q space is moved toward the optimum point 
and gradually reduced, so that the search region 
becomes small enough to approximate responses 
accurately around the optimum.  

However, when surrogate models are not accurate 
during BLISS cycles, it may cause convergence 
problem or even convergence to spurious non-physical 
optimum. Accurate surrogate models will accelerate 
convergence of the BLISS cycle. If the surrogate 
models are perfectly accurate, it is possible that BLISS 
converges with only a single cycle. Since the 
construction steps for the approximation models are 
independent for each BB module, one is free to select 
the most suitable model for each BB module. For 
example, a polynomial model can be used for BB1, 
while Kriging model could be used for BB2. 
Disciplinary groups may use a surrogate model that 
would fit their BB modules the best based on their 
experience. In cases where the BB module is very 
cheap and easy to handle, one may choose to skip 
surrogate model building and use the actual analysis at 
the system level.   

In previous BLISS studies3,8,9, polynomial RS 
models have been used. The response surface 
methodology10 was originally developed in 
experimental sciences, but it has become popular to fit 
computer simulation results. RS techniques, assuming 
a polynomial model for underlying input and output 
relationship creates a global approximation to cover the 
design space under examination. RS technique can be 
effective to approximate uni-modal response with its 
popular choice of quadratic model. Least squares 
method is used to fit the model to the observed data. 
RS techniques are based on well established statistical 
theories such as analysis of variance (ANOVA), which 
is useful to analyze relative importance of input and 
output relationship. The polynomial model results in a 
compact representation of the fit, which is inexpensive 
to use. However, the number of regressions coefficients 
increases very rapidly as the number of design 

variables, d, increases. For example, the number of 
computer simulations required for a quadratic model is 
(d+1)(d+2)/2, which would be prohibitively large for 
about more than 20 variables, unless these runs can be 
computed in parallel using massively parallel 
computers.   

In this work, Kriging model is compared to 
polynomial model in a BLISS application. Kriging 
model, originally developed in the field of geostatistics, 
was proposed to fit deterministic computer simulations 
by Sack, et al11. In Kriging, the response Y as a 
function of d-dimentaional input x is modeled as  

Y(x) = β + Z(x)   4.a 

where β is a constant, Z is a Gaussian process with 
mean 0 and variance σ2 at each x. Correlation of Z of 
two different locations x(i) and x(j), is modeled as a 
positive definite function. For example an exponential 
function is the most common choice:  


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where θk are scale parameters that need to be estimated. 
If there are N observations (or sites) of Y, define 

S = { x(1), x(2), …, x(N) },   4.c 

Ys = {Y(x(1)), Y(x(2)), …, Y(x(N))}, 4.d 

Cov[Z(x(i)), Z(x(j))] = σ2R[R(x(i), x(j))], 4.e 

r(x,S) = {R(x, x(1)), R(x, x(2)), …, R(x, x(N))}, 4.f 

where R is the correlation matrix of Z between 
observed sites S, and r is the correlation vector of Z 
between a location x and S. Kriging model seeks 
expected value of Y given the N observations: 

)|))(()(ˆ
sYxx YEY = ,   4.g 

which can be shown to be 

)ˆ1(),(ˆ)(ˆ 1 ββ ⋅−+= −
r

sYRSxrx TY   4.h 

and 

sYRR 111 1)11(ˆ −−−= TT
rrr

β .  4.i 

Fitting Kriging model requires finding parameter θj for 
d independent design variables via maximum 
likelihood estimate. This is typically solved as a d-
dimensional unconstrained optimization problem, 
which can be computational expensive for high 
dimensional problems.  

Kriging model interpolates the responses so that 
the prediction is exact at the observation sites. Since it 
does not make any assumption for underlying model of 
the response, Kriging is able to approximate multi-
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modal responses whereas the quadratic polynomial 
model is inherently uni-modal. Due to its interpolation 
nature, Kriging can be used to approximate the design 
space globally along with local refinement by adding 
data into area of interests. The Kriging model 
program12,13 that was developed from researches of the 
Boeing Company was repackaged so that it can be used 
within ModelCenter framework environment. 

Giunta and Watson14 compared accuracy of 
quadratic polynomial and Kriging model on two types 
of test functions: sinusoidal and quasi-quadratic 
functions in 1, 5, and 10 dimensions. It was reported 
that polynomial model was more accurate than Kriging 
model except the sinusoidal function in one dimension. 
However, its authors noted that the results should not 
be taken as a general conclusion because the accuracy 
of surrogate models will vary depending on the nature 
of the response being approximated. In fact, the 
Kriging model used in ref. 14 was a simplified model, 
using the same θk for all dimensions, which may have 
reduced modeling capability. Simpson et al.15 reported 
comparison of Kriging and polynomial model on a 
nozzle design problem. The two showed comparable 
prediction accuracy. Jin et al.16, compared four 
different surrogate models including polynomial, 
Kriging, multivariate adaptive regression splines 
(MARS), and radial basis function (RBF). It was 
reported that RBF performed better in many test 
functions, and Kriging and polynomial model showed 
comparable prediction accuracy. This paper adds one 

more case to make such comparison from a perspective 
of an MDO application.   

 
BLISS Example Model 

 

A supersonic business jet (SBJ) design example 
has been selected for this study. The example was 
taken from a previous BLISS research work7. There are 
four disciplinary modules in this problem: structures, 
aerodynamics, propulsion, and performance. Each 
module uses simple algebraic equations written in 
MATLAB® scripts, suitable for simplified conceptual 
design. There are 6 system variables, and the structures 
module has two local variables, while the 
aerodynamics and propulsion modules have one local 
variable each. 

Table 1 summarized design variables and 
response variables of the SBJ problem. 

Figure 1 shows a design structure matrix of the 
SBJ example. It is seen that structures, aerodynamics 
and propulsion BBs are coupled by the feedback loops. 
The performance module simply calculates the system 
performance from the outputs from the upstream 
modules. The system objective is to maximize the 
range. 

 

 
 

Table 1: Variable table of supersonic business jet problem. 

Input variables BB module Output variables 
Xsh Xloc Y* 

Local constraints 

Structures WT: total weight 
WF: fuel weight 
θ: wing twist 

t/c: thickness ratio 
AR: aspect ratio 
Λ: sweep angle 
Sref: reference area 

λ: taper ratio 
X: wingbox cross 
section 

L 
WE 

g1-5:wing stress 
g6: wing twist 

Aerodynamics L: lift 
D: drag 
L/D: lift to drag ratio 

t/c: thickness ratio 
h: altitude 
M: mach number 
AR: aspect ratio 
Λ: sweep angle 
Sref: reference area 

Cf: skin friction 
coefficient 

WT 
θ 
ESF 

g1: pressure gradient 

Propulsion SFC: specific fuel 
consumption 
WE: engine weight 
ESF: engine scale factor 

h: altitude 
M: mach number 
 

T: thrust D g1:engine scale factor 
g2: engine 
temperature 
g3: throttle setting 

Range R: range h: altitude 
M: mach number 

 WT 
WF 
L/D 
SFC 
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ModelCenter MDO framework was used and 
this exercise served to measure the current 
capabilities of ModelCenter against the requirements 
to deploy BLISS methodology. BB optimizations, 
surrogate model generation, and system 
optimizations are implemented in a fully automated 
manner in ModelCenter.  shows a screenshot 
of ModelCenter that reflects the workflow of BLISS 
MDO.  

Structures

Aerodynamics

Propulsion

Performance

WE

L

WT,θ

D

L

SFC
ESF

 

Figure 3

Figure 3: BLISS implementation of SBJ example in 
ModelCenter. 

 

Figure 1: Data dependency of the SBJ example. 

The underlying assumption in the present 
formulation of BLISS is that a BB is capable of 
generating a design feasible with respect to local 
constraints for any settings of system design 
variables, weighting coefficients, and the coupling 
variables. In some cases, this assumption may not be 
correct. It may happen that for some combinations of 
system variables, a BB module would be unable to 
produce a feasible design by manipulating only the 
local variables. The inability to conclude a BB 
optimization with a feasible design may cause trouble 
in the BLISS process. For example, the flow 
separation constraint (e.g., pressure gradient) of the 
aerodynamic BB of the supersonic business jet 
example could not be satisfied for certain 
combinations of the system variables. In fact, the 
pressure gradient depends only on t/c, a shared 
variable as seen in . Therefore it is not 
possible to get a feasible design for BB2 if t/c is 
greater than 0.06. 

 

Comparison of Polynomial Model and Kriging 
Model in BLISS Application 
 

Figure 2

Figure 2: Pressure gradient constraint of the 
aerodynamic module (BB2). 

Quadratic and linear polynomial model were 
applied to the simplified example, SBJ-1. Latin 
hypercube sampling (LHS)17 design was used 
throughout this study. LHS has a good space filling 
characteristics that is suited to generating sample 
sites in a high dimensional space. Users are free to 
select the number of sites as desired. The minimum 
number of sites required for least squares fit increases 
quickly as the number of design variables increases 
for polynomial model. In this study twice of the 
minimum requirement was used to get reliable least 
squares fits.  summarizes the number of sites 
of the three BB modules.  

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0 0.02 0.04 0.06 0.08 0.1
t/c

g1

 

Table 2

Table 2: Number of runs used to fit polynomial 
response surface models. 

 
Number of 
variables in 

Q space 

Number of 
sites for 

linear model 

Number of sites 
for quadratic 

model 

Structures 9 20 110 

Aerodynamics 12 26 182 

Propulsion 6 14 56 

We are considering two variations of the SBJ 
problem: a simplified version with the pressure 
gradient constraint excluded (SBJ-1) and the one 
counting for the constraint (SBJ-2). An approach is 
presented later in this paper to handle the infeasible 
BB optimization cases in a general way.  

 

 
American Institute of Aeronautics and Astronautics 

 

5



 

( )
,

ˆ

/

11

2

nv

y

nv

yy

yRMSECOV
nv

i
i

nv

i
ii ∑∑

==

−
=

=

  5.a 
However, the BLISS process using the polynomial 
models did not converge well. The results were 
sensitive to initial starting points and BLISS did not 
find the known best solution of MDF formulation. 

 and  shows the convergence history 
of the system objective when linear or quadratic 
polynomial model was used, respectively. The 
predicted range via surrogate model was compared to 
actual range value from the computer simulation. The 
predicted range was not in satisfactory accuracy 
during the BLISS cycles. The quadratic model result 
shows faster improvement of the objective initially 
than linear model but shows larger oscillation later 
on.  

Figure 4

Figure 4: Convergence history of the system objective 
for SBJ-1 problem (linear polynomial model). 

Figure 5

Figure 5: Convergence history of the system objective 
for SBJ-1 problem (quadratic polynomial model). 

where nv is the number of validation sites. COV of 
the polynomial models is plotted in  and 

 for three response variables: WT (Y1 of 
BB1), D (Y2 of BB2), and SFC (Y1 of BB3), where 
the polynomial model had large errors compared to 
other responses. In both linear ( ) and 
quadratic model ( ), WT had the largest COV 
level. 

Figure 6

Figure 6

Figure 6: Coefficient of variance of linear polynomial 
model for SBJ-1 problem. 

Figure 7

Figure 7

Figure 7: Coefficient of variance of quadratic 
polynomial model for SBJ-1 problem. 
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We are interested in whether using Kriging 
model would help improve the convergence of the 
BLISS cycles. Figure 8 shows that the BLISS process 
converged after 22 cycles when a Kriging model was 
used. In fact, the number of data points for the 
Kriging model was the same as that of the linear 
response surface model as shown in Table 2. It is 
remarkable that Kriging model produced success 
with reasonably small sample size, while polynomial 
model did not produce a converged solution with 
much larger sample size. The COV plot in Figure 9 

Because accuracy of the surrogate model is crucial to 
the success of the BLISS, quality of the fit of the 
polynomial model was checked. For each of the 
response surface model, 30 validation sites were 
generated randomly and the coefficient of the 
variance (COV) was calculated: 

 
American Institute of Aeronautics and Astronautics 

 

6



 

shows that the error level of the Kriging model is 
consistently lower than that of polynomial results 
from Figure 6 and Figure 7. The maximum COV of 
the Kriging models was less than 0.003 after 
convergence. This explains why Kriging model was 

more successful.  summarized SBJ-1 
optimization results. It shows that the BLISS process 
with Kriging model found essentially the same design 
as that of MDF formulation.  

Table 3

Table 3: Summary of BLISS results on the supersonic business jet example (SBJ-1). 

 

BLISS Optimum Variable Initial Lower 
bound 

Upper 
bound 

MDF 
optimum Linear RSM* Quadratic RSM* Kriging 

t/c  0.05 0.01 0.09 0.09 0.07848 0.07975 0.08977 
h 45000 30000 60000 60000 60000 59976 60000 

Mach  1.6 1.4 1.8 1.4 1.4 1.402 1.4 
AR  5.5 2.5 8.5 2.5 2.5 2.67 2.5 
Λ  55 40 70 70 70 70 70 

Sref 1000 500 1500 1500 1401 1379 1500 
λ  0.25 0.1 0.4 0.1122 0.1521 0.1227 0.1123 
X  1.0 0.75 1.25 0.75 0.75 0.75 0.75 
Cf 1.0 0.75 1.25 0.75 0.75 0.75 0.75 
T  0.5 0.1 1.0 0.1562 0.1562 0.1566 0.1562 

Range 535.8   4505 3957 (predicted) 
4220 (exact) 

3992 (predicted) 
4043 (exact) 

4484 (predicted) 
4503 (exact) 

(*: values at cycle 50, convergence was not achieved)
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BLISS Strategy for Infeasible Subsystem 
Optimization 

 

For the SBJ-1 problem, the pressure gradient 
constraint of BB2 was excluded because the BB 
optimization was not feasible when a shared variable, 
t/c, is greater than 0.06. If this constraint is included in 
the BLISS process, all of DOE runs of BB optimization 
for BB2 would fail when bounds of t/c fall on the 
infeasible domain. This prevents creation of surrogate 
model of the BB and BLISS process cannot progress.  

Figure 8: Convergence history of the system objective for 
SBJ-1 problem (Kriging model). 
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A remedy is proposed that uses approximation 
models for constraint violation. When a BB 
optimization fails to generate a feasible design, mark 
the design as infeasible in the domain of the system 
optimization, and record the value of the violated 
constraint and continue performing the BB 
optimizations as usual. An approximation model is 
fitted to the constraint violation, which may be used to 
find the constraint feasibility boundary. An 
approximation model (ga) will need to be built for each 
BB constraint that may be infeasible. The original 
formulation of BLISS uses only the compatibility 
constraints of coupled variables. Now, the feasibility 
constraint needs to be considered by the system 
optimization (Eq. 7.e).  

Figure 9: Coefficient of variance of quadratic polynomial 
model for SBJ-1 problem. 
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BB Optimization (BBOPT) and Surrogate Model 
Generation 

Given: Q = {Xsh, Y*, w}  6.a 
Find: U = {Xloc}  6.b 
Minimize: fk(U) = Σ wiY^

i  6.c 
Satisfy: gk(U) ≤ 0  6.d 
  UL ≤ U ≤ UU  6.e 
Using the BBOPT runs create surrogate models: 
Ya

^ (for coupled response Y^) and ga (for each of 
infeasible local constraint gk). 

 

System Optimization (SOPT) 

Find: Q = {Xsh, Y*, w}  7.a 
Minimize: fk(Q) = fk(Ya

^)  7.b 
Satisfy: Ya

*- Ya
^= 0  7.c 

  QL ≤ Q ≤ QU  7.d 
  ga(Q) ≤ 0  7.e 

 

It is important to note that the system 
optimization is still separated from the BB 
optimizations because surrogate models are used for 
the local constraints. Disciplinary groups are still in 
charge of performing BB optimizations independent of 
other groups or system optimization. Therefore, modus 
operandi of BLISS MDO is still valid with this 
modification; Disciplinary autonomy is maintained 
while approximation models are used to transfer 
information from the BB optimizations. Because the 
constraint violation may be irregular and non-smooth, 
there will be benefits in using flexible models such as 
Kriging over polynomial model for such violated 
constraints. This infeasible BBOPT handling approach 
was applied to the SBJ problem (SBJ-2). Only one 
local constraint, the pressure gradient of BB2, was 
considered for surrogate modeling. Because the 
pressure constraint depends only on the shared 
variable, it is natural to fit the constraint as a function 
of Q, including all cases of successful and unsuccessful 
runs of BBOPT. In other words, the constraint value at 
the end of unsuccessful BBOPT is reliable. However, if 
the constraint were a function of local variables, care 
should be taken in fitting surrogate models because the 
final constraint value returned at the end of 
unsuccessful optimization may be erratic. 

 Considering that polynomial model was not 
successful even when the problematic pressure gradient 
was excluded, only the Kriging model was tried to 
apply the infeasible BBOPT handling strategy. Again 
the same size DOE as the linear model was used. 

 shows the convergence history of the system 
objective for SBJ-2 problem. It is observed a 
convergence was achieved after around 21 cycles. As 

seen from Table 4, the BLISS solution found the same 
solution of the MDF approach. Note that the t/c value 
is exactly 0.06 where the constraint boundary is 
located. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50

BLISS Cylcle

R
an

ge
 (n

au
tic

al
 m

ile
s

Range (predicted)

Range(exact)

 

Figure 10

Figure 10: Convergence history of the system objective 
for SBJ-2 problem (Kriging model). 

 
Table 4: Summary of optimization results for SBJ-2 

problem. 

BLISS optimum Variable MDF 
optimum Kriging Kriging (with 

data reuse) 
t/c  0.06 0.06 0.06 
H 60000 60000 60000 

Mach  1.4 1.4 1.4 
AR  2.5 2.5 2.5 
Λ  70 70 70 

Sref 1500 1500 1500 
λ  0.112 0.1119 0.1123 
X  0.75 0.75 0.75 
Cf 0.75 0.75 0.75 
T  0.1562 0.1562 0.1562 

Range 3958 3946 (predicted) 
3958 (exact) 

3951 (predicted) 
3960 (exact) 

 
 
Data Reuse Strategy to Reduce Computational Cost 
of Surrogate Model Building 
 

As BLISS process progress, many BBOPT runs 
are available from previous cycles. So far, a brand new 
set of runs were generated for each cycle on the new 
search region of BLISS. But it is not difficult to include 
previous BBOPT runs when creating surrogate models 
on the new BLISS search region. If the previous 
database of BBOPT runs can be reused, it is expected 
to increase accuracy of surrogate models and reduce 
computational cost required performing BBOPT runs.  
Toward this approach, Kriging model has a capability 
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to refine its approximation by adding more data points 
into area of interests due to its interpolating nature.  

This section presents a technique to 
systematically reuse previous BB optimization runs for 
Kriging in BLISS MDO. There are a few 
characteristics of Kriging we need to consider to devise 
such technique. First, computational cost of fitting 
Kriging model increases as more data points are 
included. The d-dimensional optimization problem to 
find Kriging coefficients, θk, may become prohibitively 
expensive if too many data points are used. Second, 
Kriging model may also experience ill-conditioning of 
the correlation matrix, R, when data points are located 
close to each other. Use of space filling DOE such as 
orthogonal array or LHS avoids this problem. 
However, when data points are reused, it is possible to 
have clustering of data points, as BLISS cycle 
progresses. Therefore, it is not always good to reuse all 
data points available. Balance should be taken between 
computational saving and quality of DOE samples 
when data points are reused.     

Outer bounds 
of Kriging

Inner bounds 
of Kriging at 
BLISS cycle i

Inner bounds 
of Kriging at 
BLISS cycle 
i+1

Discard 
previous data 
and begin a 
new DOE. 

+Oi

+Oi+1

Inner bounds 
of Kriging at 
BLISS cycle 
i+m

 

+Oi+m

Figure 11: Data reuse strategy for Kriging. 

Figure 11 illustrates a data reuse strategy for 
Kriging. Here we introduce two levels of bounds in Q 
space, inner bounds and outer bounds. Inner bounds of 
Kriging match the region defined by upper and lower 
bounds of BBOPT. The outer bounds define a limit 
where the inner region can move along BLISS cycles 
accumulating data points. For example, at cycle i, we 
have eight DOE design points within the inner bounds 
defined around the current optimum, Oi. Now in the 
next cycle, the BLISS solution moved to Oi+1, and new 
inner bounds are defined. We carry over all data points 
from cycle i, and because of that we can use less 
number of new data points. For example, we can use 
only half number of data points, i.e., four. Now we 
create Kriging model using the twelve accumulated 
data points from cycles i and i+1. Data points are 

accumulated in this way until the inner bounds goes 
outside the outer bounds. If this happens at cycle i+m 
(m is the number of cycles the data accumulation was 
done consecutively), we discard previous data points 
and generate a full size DOE with eight runs. The outer 
bounds are redefined around the new inner bounds at 
BLISS cycle i+m. The size of the outer bounds cannot 
be too big because it will cause ill-conditioning of 
correlation matrix, R, due to data clustering. In this 
study the size of the outer bounds was three times 
greater than the inner bounds for each dimension. 
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Figure 12: Convergence history of the system objective 

for SBJ-2 problem (Kriging model with data reuse 
strategy). 
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Figure 13: Number of BBOPT runs for BB1. 

Figure 12 shows that the convergence history of 
SBJ-2 example when the data reuse strategy was used. 
Convergence was achieved about after 22 cycles and 
the MDF optimum was successfully found as shown in 
Table 4. Figure 13 shows the effect of the data reuse 
strategy on the number of BBOPT runs for BB1. The 
data reuse strategy reduced the number of BBOPT runs 
to 68% (=680/1000) after 50 cycles. For BB2 and BB3, 
the numbers have been reduced to 66% (=858/1300), 
and 63% (=441/700), respectively. Overall the data 
reuse strategy saved more than 30% of BBOPT runs. 
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Concluding Remarks 
 

Building accurate approximation models is a key 
to the success of surrogate model based MDO 
techniques such as BLISS. BLISS decomposes a 
coupled system into sub-systems and recombines them 
in a systematic way using surrogate models of 
optimized sub-systems. In this work, a Kriging model 
was compared to polynomial RS models in the 
application of supersonic business jet (SBJ). It was 
seen the Kriging model was more accurate than 
polynomial model during BLISS process. Polynomial 
models experienced difficulties in convergence of 
BLISS cycles but Kriging model was able to find the 
known best solution with much less number of data 
points. However, this comparison between Kriging and 
polynomial model may not be interpreted as a general 
conclusion because accuracy of surrogate models is 
expected to depend on the nature of the BB modules 
being approximated. Therefore, it is important that 
BLISS offers complete autonomy in selection of 
surrogate models for each disciplinary module. Other 
alternatives such as radial basis function or neural 
network can be easily incorporated into BLISS as 
disciplinary experts find them suitable.  

A modification of BLISS method was developed 
to handle cases where subsystem optimizations cannot 
find feasible designs. The approach uses surrogate 
models for the violated constraint and includes the 
constraint in the system optimization level. This 
technique was successfully demonstrated on the SBJ 
example where a violated constraint of the 
aerodynamics module depended only on a shared 
variable. Kriging model was very effective to model 
the non-linear constraint. 

A strategy to reuse data points generated during 
the BLISS cycles was developed. It was possible to use 
less number of new design points by carrying over the 
data from previous cycles. Kriging model suited well to 
this technique because new data points can be added to 
area of interests to refine the approximation locally. It 
was shown that the data reuse strategy saved more than 
30% of the total BB optimizations. Ref. 13 describes 
using a second Gaussian process to refine Kriging 
model locally. This technique has advantages that it 
can avoid ill-conditioning of correlation matrix and it is 
computational cheap, as well.  For future work this 
technique will be compared to the simple data reuse 
strategy introduced here in BLISS applications. 

The SBJ example was implemented within 
ModelCenter MDO framework. This work is a part of 
efforts to enhance capabilities to create and perform 
advanced MDO scenarios within ModelCenter. The 

Kriging model will be added to the surrogate model 
toolkit of ModelCenter. The enhancement will allow 
creating sophisticated MDO scenarios rapidly and 
perform BLISS design cycles in an effective manner.   
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